Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
medrxiv; 2023.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2023.09.14.23295549

ABSTRACT

BackgroundMany questions remain unanswered regarding the implication of lipid metabolites in severe SARS-CoV-2 infections. By re-analyzed sequencing data from the nasopharynx of a previously published cohort, we found that alox genes, involved in eicosanoid synthesis, were up-regulated in high WHO score patients, especially in goblet cells. Herein, we aimed to further understand the roles played by eicosanoids during severe SARS-CoV-2 infection. Methods and findingsWe performed a total fatty acid panel on plasma and bulk RNA-seq analysis on peripheral blood mononuclear cells (PBMCs) collected from 10 infected and 10 uninfected patients. Univariate comparison of lipid metabolites revealed that lipid metabolites were increased in SARS-CoV-2 patients including the lipid mediators Arachidonic Acid (AA) and Eicosapentaenoic Acid (EPA). AA, EPA and the fatty acids Docosahexaenoic acid (DHA) and Docosapentaenoic acid (DPA), were positively correlated to WHO disease severity score. Transcriptomic analysis demonstrated that COVID-19 patients can be segregated based on WHO scores. Ontology, KEGG and Reactome analysis identified pathways enriched for genes related to innate immunity, interactions between lymphoid and nonlymphoid cells, interleukin signaling and, cell cycling pathways. ConclusionsOur study offers an association between nasopharynx mucosa eicosanoid genes expression, specific serum inflammatory lipids and, subsequent DNA damage pathways activation in PBMCs to severity of COVID-19 infection.


Subject(s)
COVID-19 , Severe Acute Respiratory Syndrome , Infections
2.
biorxiv; 2022.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2022.10.27.514070

ABSTRACT

The molecular underpinnings of organ dysfunction in acute COVID-19 and its potential long-term sequelae are under intense investigation. To shed light on these in the context of liver function, we performed single-nucleus RNA-seq and spatial transcriptomic profiling of livers from 17 COVID-19 decedents. We identified hepatocytes positive for SARS-CoV-2 RNA with an expression phenotype resembling infected lung epithelial cells. Integrated analysis and comparisons with healthy controls revealed extensive changes in the cellular composition and expression states in COVID-19 liver, reflecting hepatocellular injury, ductular reaction, pathologic vascular expansion, and fibrogenesis. We also observed Kupffer cell proliferation and erythrocyte progenitors for the first time in a human liver single-cell atlas, resembling similar responses in liver injury in mice and in sepsis, respectively. Despite the absence of a clinical acute liver injury phenotype, endothelial cell composition was dramatically impacted in COVID-19, concomitantly with extensive alterations and profibrogenic activation of reactive cholangiocytes and mesenchymal cells. Our atlas provides novel insights into liver physiology and pathology in COVID-19 and forms a foundational resource for its investigation and understanding.


Subject(s)
COVID-19 , Multiple Organ Failure , Sepsis , Chemical and Drug Induced Liver Injury
3.
medrxiv; 2022.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2022.10.25.22281528

ABSTRACT

Recent case reports and epidemiological data suggest fungal infections represent an under-appreciated complication among people with severe COVID-19. However, the frequency of fungal colonization in patients with COVID-19 and associations with specific immune responses in the airways remain incompletely defined. We previously generated a single-cell RNA-sequencing (scRNA-seq) dataset characterizing the upper respiratory microenvironment during COVID-19, and mapped the relationship between disease severity and the local behavior of nasal epithelial cells and infiltrating immune cells. Our study, in agreement with findings from related human cohorts, demonstrated that a profound deficiency in host immunity, particularly in type I and type III interferon signaling in the upper respiratory tract, is associated with rapid progression to severe disease and worse clinical outcomes. We have now performed further analysis of this cohort and identified a subset of participants with severe COVID-19 and concurrent detection of Candida species-derived transcripts within samples collected from the nasopharynx and trachea. Here, we present the clinical characteristics of these individuals, including confirmatory diagnostic testing demonstrating elevated serum (1, 3)-{beta}-D-glucan and/or confirmed fungal culture of the predicted pathogen. Using matched single-cell transcriptomic profiles of these individuals' respiratory mucosa, we identify epithelial immune signatures suggestive of IL-17 stimulation and anti-fungal immunity. Further, we observe significant expression of anti-fungal inflammatory cascades in the nasal and tracheal epithelium of all participants who went on to develop severe COVID-19, even among participants without detectable genetic material from fungal pathogens. Together, our data suggests that IL-17 stimulation - in part driven by Candida colonization - and blunted type I/III interferon signaling represents a common feature of severe COVID-19 infection.


Subject(s)
Mycoses , Graft vs Host Disease , COVID-19 , Colorectal Neoplasms
4.
Toni M. Delorey; Carly G. K. Ziegler; Graham Heimberg; Rachelly Normand; Yiming Yang; Asa Segerstolpe; Domenic Abbondanza; Stephen J. Fleming; Ayshwarya Subramanian; Daniel T. Montoro; Karthik A. Jagadeesh; Kushal Dey; Pritha Sen; Michal Slyper; Yered Pita-Juarez; Devan Phillips; Zohar Bloom-Ackermann; Nick Barkas; Andrea Ganna; James Gomez; Erica Normandin; Pourya Naderi; Yury V. Popov; Siddharth S. Raju; Sebastian Niezen; Linus T.-Y. Tsai; Katherine J. Siddle; Malika Sud; Victoria M. Tran; Shamsudheen Karuthedath Vellarikkal; Liat Amir-Zilberstein; Joseph M Beechem; Olga R. Brook; Jonathan Chen; Prajan Divakar; Phylicia Dorceus; Jesse M Engreitz; Adam Essene; Donna M. Fitzgerald; Robin Fropf; Steven Gazal; Joshua Gould; Tyler Harvey; Jonathan Hecht; Tyler Hether; Judit Jane-Valbuena; Michael Leney-Greene; Hui Ma; Cristin McCabe; Daniel E. McLoughlin; Eric M. Miller; Christoph Muus; Mari Niemi; Robert Padera; Liuliu Pan; Deepti Pant; Jenna Pfiffner-Borges; Christopher J. Pinto; Jason Reeves; Marty Ross; Melissa Rudy; Erroll H. Rueckert; Michelle Siciliano; Alexander Sturm; Ellen Todres; Avinash Waghray; Sarah Warren; Shuting Zhang; Dan Zollinger; Lisa Cosimi; Rajat M Gupta; Nir Hacohen; Winston Hide; Alkes L. Price; Jayaraj Rajagopal; Purushothama Rao Tata; Stefan Riedel; Gyongyi Szabo; Timothy L. Tickle; Deborah Hung; Pardis C. Sabeti; Richard Novak; Robert Rogers; Donald E. Ingber; Z Gordon Jiang; Dejan Juric; Mehrtash Babadi; Samouil L. Farhi; James R. Stone; Ioannis S. Vlachos; Isaac H. Solomon; Orr Ashenberg; Caroline B.M. Porter; Bo Li; Alex K. Shalek; Alexandra-Chloe Villani; Orit Rozenblatt-Rosen; Aviv Regev.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.02.25.430130

ABSTRACT

The SARS-CoV-2 pandemic has caused over 1 million deaths globally, mostly due to acute lung injury and acute respiratory distress syndrome, or direct complications resulting in multiple-organ failures. Little is known about the host tissue immune and cellular responses associated with COVID-19 infection, symptoms, and lethality. To address this, we collected tissues from 11 organs during the clinical autopsy of 17 individuals who succumbed to COVID-19, resulting in a tissue bank of approximately 420 specimens. We generated comprehensive cellular maps capturing COVID-19 biology related to patients demise through single-cell and single-nucleus RNA-Seq of lung, kidney, liver and heart tissues, and further contextualized our findings through spatial RNA profiling of distinct lung regions. We developed a computational framework that incorporates removal of ambient RNA and automated cell type annotation to facilitate comparison with other healthy and diseased tissue atlases. In the lung, we uncovered significantly altered transcriptional programs within the epithelial, immune, and stromal compartments and cell intrinsic changes in multiple cell types relative to lung tissue from healthy controls. We observed evidence of: alveolar type 2 (AT2) differentiation replacing depleted alveolar type 1 (AT1) lung epithelial cells, as previously seen in fibrosis; a concomitant increase in myofibroblasts reflective of defective tissue repair; and, putative TP63+ intrapulmonary basal-like progenitor (IPBLP) cells, similar to cells identified in H1N1 influenza, that may serve as an emergency cellular reserve for severely damaged alveoli. Together, these findings suggest the activation and failure of multiple avenues for regeneration of the epithelium in these terminal lungs. SARS-CoV-2 RNA reads were enriched in lung mononuclear phagocytic cells and endothelial cells, and these cells expressed distinct host response transcriptional programs. We corroborated the compositional and transcriptional changes in lung tissue through spatial analysis of RNA profiles in situ and distinguished unique tissue host responses between regions with and without viral RNA, and in COVID-19 donor tissues relative to healthy lung. Finally, we analyzed genetic regions implicated in COVID-19 GWAS with transcriptomic data to implicate specific cell types and genes associated with disease severity. Overall, our COVID-19 cell atlas is a foundational dataset to better understand the biological impact of SARS-CoV-2 infection across the human body and empowers the identification of new therapeutic interventions and prevention strategies.


Subject(s)
Fibrosis , Adenocarcinoma, Bronchiolo-Alveolar , Respiratory Distress Syndrome , Acute Lung Injury , COVID-19
5.
Christoph Muus; Malte D Luecken; Gokcen Eraslan; Avinash Waghray; Graham Heimberg; Lisa Sikkema; Yoshihiko Kobayashi; Eeshit Dhaval Vaishnav; Ayshwarya Subramanian; Christopher Smillie; Karthik Jagadeesh; Elizabeth Thu Duong; Evgenij Fiskin; Elena Torlai Triglia; Christophe Becavin; Meshal Ansari; Peiwen Cai; Brian Lin; Justin Buchanan; Jian Shu; Adam L Haber; Hattie Chung; Daniel T Montoro; Taylor Adams; Hananeh Aliee; Samuel J Allon; Zaneta Andrusivova; Ilias Angelidis; Orr Ashenberg; Kevin Bassler; Inbal Benhar; Joseph Bergenstrahle; Ludvig Bergenstrahle; Liam Bolt; Emelie Braun; Linh T Bui; Mark Chaffin; Evgeny Chichelnitskiy; Joshua Chiou; Thomas M Conlon; Michael S Cuoco; Marie Deprez; David S Fischer; Astrid Gillich; Joshua Gould; Austin J Gutierrez; Arun C Habermann; Tyler Harvey; Peng He; Xiaomeng Hou; Lijuan Hu; Alok Jaiswal; Peiyong Jiang; Theodoros Kapellos; Christin S Kuo; Ludvig Larsson; Michael A Leney-Greene; Kyungtae Lim; Monika Litvinukova; Ji Lu; Leif S Ludwig; Wendy Luo; Henrike Maatz; Elo Maddissoon; Lira Mamanova; Kasidet Manakongtreecheep; Ian Mbano; Alexi M McAdams; Ross J Metzger; Ahmad N Nabhan; Sarah K Nyquist; Jose Ordovas-Montanes; Lolita Penland; Olivier B Poirion; Segio Poli; CanCan Qi; Daniel Reichart; Ivan Rosas; Jonas Schupp; Rahul Sinha; Rene V Sit; Kamil Slowikowski; Michal Slyper; Neal Smith; Alex Sountoulidis; Maximilian Strunz; Dawei Sun; Carlos Talavera-Lopez; Peng Tan; Jessica Tantivit; Kyle J Travaglini; Nathan R Tucker; Katherine Vernon; Marc H Wadsworth III; Julia Waldman; Xiuting Wang; Wenjun Yan; Ali Onder Yildirim; William Zhao; Carly G K Ziegler; Aviv Regev; - The NHLBI LungMAP Consortium; - The Human Cell Atlas Lung Biological Network.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.04.19.049254

ABSTRACT

The COVID-19 pandemic, caused by the novel coronavirus SARS-CoV-2, creates an urgent need for identifying molecular mechanisms that mediate viral entry, propagation, and tissue pathology. Cell membrane bound angiotensin-converting enzyme 2 (ACE2) and associated proteases, transmembrane protease serine 2 (TMPRSS2) and Cathepsin L (CTSL), were previously identified as mediators of SARS-CoV2 cellular entry. Here, we assess the cell type-specific RNA expression of ACE2, TMPRSS2, and CTSL through an integrated analysis of 107 single-cell and single-nucleus RNA-Seq studies, including 22 lung and airways datasets (16 unpublished), and 85 datasets from other diverse organs. Joint expression of ACE2 and the accessory proteases identifies specific subsets of respiratory epithelial cells as putative targets of viral infection in the nasal passages, airways, and alveoli. Cells that co-express ACE2 and proteases are also identified in cells from other organs, some of which have been associated with COVID-19 transmission or pathology, including gut enterocytes, corneal epithelial cells, cardiomyocytes, heart pericytes, olfactory sustentacular cells, and renal epithelial cells. Performing the first meta-analyses of scRNA-seq studies, we analyzed 1,176,683 cells from 282 nasal, airway, and lung parenchyma samples from 164 donors spanning fetal, childhood, adult, and elderly age groups, associate increased levels of ACE2, TMPRSS2, and CTSL in specific cell types with increasing age, male gender, and smoking, all of which are epidemiologically linked to COVID-19 susceptibility and outcomes. Notably, there was a particularly low expression of ACE2 in the few young pediatric samples in the analysis. Further analysis reveals a gene expression program shared by ACE2+TMPRSS2+ cells in nasal, lung and gut tissues, including genes that may mediate viral entry, subtend key immune functions, and mediate epithelial-macrophage cross-talk. Amongst these are IL6, its receptor and co-receptor, IL1R, TNF response pathways, and complement genes. Cell type specificity in the lung and airways and smoking effects were conserved in mice. Our analyses suggest that differences in the cell type-specific expression of mediators of SARS-CoV-2 viral entry may be responsible for aspects of COVID-19 epidemiology and clinical course, and point to putative molecular pathways involved in disease susceptibility and pathogenesis.


Subject(s)
COVID-19 , Virus Diseases
6.
Non-conventional in English | WHO COVID | ID: covidwho-100497

ABSTRACT

There is pressing urgency to understand the pathogenesis of the severe acute respiratory syndrome coronavirus clade 2 (SARS-CoV-2) which causes the disease COVID-19. SARS-CoV2 spike (S)-protein binds ACE2, and in concert with host proteases, principally TMPRSS2, promotes cellular entry. The cell subsets targeted by SARS-CoV-2 in host tissues, and the factors that regulate ACE2 expression, remain unknown. Here, we leverage human, non-human primate, and mouse single-cell RNA-sequencing (scRNA-seq) datasets across health and disease to uncover putative targets of SARS-CoV-2 amongst tissue-resident cell subsets. We identify ACE2 and TMPRSS2 co-expressing cells within lung type II pneumocytes, ileal absorptive enterocytes, and nasal goblet secretory cells. Strikingly, we discover that ACE2 is a human interferonstimulated gene (ISG) in vitro using airway epithelial cells, and extend our findings to in vivo viral infections. Our data suggest that SARS-CoV-2 could exploit species-specific interferon-driven upregulation of ACE2, a tissue-protective mediator during lung injury, to enhance infection.

SELECTION OF CITATIONS
SEARCH DETAIL